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LE'ITER TO THE EDITOR 

Hierarchical percolation model with anomalous 
multifractal measure 
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Polymer Studies and Department of Physics, Bastan University, Boston, MA 02215, USA 

Received 2 January 1991 

Abstract. Hierarchical models are introduced to discuss the anomalous multifractal 
measure o f  the current fraction distribution on the percolating cluster analytically. The 
deterministic fractal model proposed by de Arcangelis, Redner and Coniglio is extended 
to take into account the faster decreasing minimum current fraction than power law. It is 
shown that, in the hierarchical models constructed from the generator of a ladder canfigur- 
ation with m plaquettes. the minimum current fraction has the dependence on L, i,..= 
exp[-cm(ln L)'], where Lis the system size and c a constant. The other hierarchical model 
showing imi.=exp[-c(ln L){ln(ln L))] is also found. 

Recently, there has been increasing interest in the critical behaviour of random resistor 
networks. It has been found that electrical properties of self-similar resistor networks 
should be characterized by an infinite set of exponents (Rammal er al 1985a, b, de 
Arcangelis er al 1985a, b, 1986). The multifractal structure of the current distribution 
has been studied (Nagatani 1987, Fourcade and Tremblay 1987, Blumenfeld er al 1987, 
Nagatani er a /  1989). In many cases, specific members of families of fractal dimensions 
represent geometrical and physical substructures of the underlying self-similar struc- 
ture. The fact that an infinite set of exponents is necessary to characterize completely 
the properties of self-similar resistor networks has analogues in most fields, such as 
turbulence, diffusion-limited aggregation, localization and dynamical system. 

Very recently, breakdown of multifractal behaviour in a range of negative moments 
has drawn much attention (Blumenfeld er a/ 1986,1987, Fourcade and Tremblay 1987, 
Lee and Stanley 1988, Blumenfeld and Aharony 1989, Kahng and Lee 1990, Mandelbrot 
et al 1990, Stanley er a/ 1990). The breakdown phenomenon is due to the dependence 
of the smallest current fraction upon the size L. There has been much discussion of 
measures such that the partition function diverges faster than a power law, for small 
enough negative q values. There exist two recently proposed forms for the dependence 
on L of imim, the smallest of all the current fraction. 

(i) Blumenfeld er al (1987) proposed that i,;, decreases exponentially with size L, 

imi.(L)=exp(-cLX). ( l a )  

i,,,;"(L) -exp[-c(ln L)*]. (1b) 

The 'free energy' T( q )  is singular at q = 0 and fails to be defined for g < 0 because of 
faster decreasing minimum current fraction than a power law. Mandelbrot (1990) 

(ii) Fourcade and Tremblay (1987) proposed the dependence of i,;. on L 
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named the 'left-sided multifractality for the 'anomalous' multifractal measures. The 
behaviour of the smallest current fraction is very sensitive to the geometry of the 
cluster. This manifests itself in a large degree of variability in the minimum current 
fraction on different clusters of the same size. 

I n  this letter, we present some hierarchical percolation models in order to discuss 
the anomalous multifractal measure of the current fraction distribution on the percolat- 
ing cluster analytically. We extend the deterministic fractal model proposed by 
de Arcangeiis et ai (iSS5) to take into account the iaster decreasing minimum current 
fraction than power law. We show that the minimum current fraction scales as imjn= 
exp[-cni(ln LIZ] in the hierarchical model constructed from the generator of a ladder 
configuration with m plaquettes. We also find the hierarchical model with imin= 
exp[-c(ln L){in(ln L)l1. 

Let us construct the deterministic fractal modei to mimic the infinite cluster at the 
percoiaiion ihreshoid. T i e  de Arcangeiis-Kedner-Conigiio modei can predict 
behaviour of a typical cluster (the positive moment of the current fraction has a power 
law), However, it cannot predict behaviour of a rare cluster such that the minimum 
current fraction decreases faster than a power law. We introduce a generator for the 
rare cluster into the typical cluster. We construct the deterministic fractal model by 
using two types of generators: one is the generator for the typical cluster and the other 
is the generator for the rare cluster. In order to imitate an infinite cluster, we choose 
the generator which has the typical values of the scaling exponents of the infinite 
cluster: the fractal dimensions of the backbone and the cutting bonds and the scaling 
exponent of the conductivity. Figure 1 shows the initiator and generators. Figure l (a )  
indicates the initiator, figure I (b )  represents the generator for the typical cluster and 
figure l(c),  ( d )  and ( e )  show the generators for the rare cluster. The method of 
cnnstndcting the dete:minis!ic fractal proceeds i:c:a!iue!y. The 6:s: ge-eratk:: is. 
obtained from the initiator (figure l (a) )  by replacing each bond with each generator: 

i C I  Id1 re1 

Figure 1. The initiator and the generators. (a) The initiator. ( b )  The generator for the 
typical CIUSICL ( e )  The generator with a single plaquette far the rare cluster. ( d )  The 
generator with two plaquettes for the rare cluster. (e) The generator with three plaquettes 
for the rare cluster. 
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the solid lines are replaced by the generator ( b )  and the wavy line is replaced by the 
generator (c )  (or generator ( d )  or generator (e)). The length scale is transformed by 
the factor b = 5 .  The second generation is obtained from the first generation by replacing 
each bond with each generator. The resultant system is scaled up to five times. The 
process is continued ad infinitum. In this way one can obtain the deterministic fractal 
model. We call the solid line the typical bond and the wavy line the rare bond. In the 
deterministic fractal for the typical cluster, the fractal dimensionalities of the backbone 
and the cutting bonds are d b = l o g l l / l o g 5  (=1.490) and dc=log3/log5 (=0.683) 
respectively, close to the known percolation values (db= 1.62 and d,=0.75) (Stauffer 
1985). The values in our model are less poor approximations than those of the model 
of de Arcangelis ef a/ (1985). This is due to the choice of the generator with m plaquettes 
for the rare cluster. Also we choose the scale factor b = 5 to embed three plaquettes 
into the square. By using the generator with larger scale factors, one can obtain 
deterministic fractal model with more accurate scaling exponents. However, we choose 
the smallest scale factor b = 5 for simplicity. The exponent, describing the power law 
dependence on scale length L of the conductivity L-"" is given by t / v  =log ;/log 5 
(=0.9345). This is a good approximation of an accurate value 0.97 obtained by computer 
simulation (Stauffer 1985). 

Firstly, we consider the fractal model constructed from the generators ( b )  and ( c ) .  
Let us consider the renormalization of the resistance at the nth generation (see figure 
2). The resistances of the typical bonds between the (n - 1)th and the nth generations 
are related by the recursion relation 

K n - 1  = f R , f i  (2) 
where R,,"-, and R , .  are the resistances of the typical bonds at the ( n  -1)th and nth 
generations. The value f is obtained from the total resistance of the generator ( b )  when 
the resistance of a single bond is a unit value. The scaling exponent of the conductivity p" . is given by t /u=logR/log b=log?/ ln5 (=0.935), very close to the known 
percolation value 0.97. Similarly, the resistances of the rare bonds at the (n - I)th and 
nth generations are related by 

Rb,n-~ = 6 R , .  + R,n[2+ (Rb,n/Ru,n)I/[3 (Rb.n/Rqn)] (3) 
where Rb,"-, and R , .  are the resistances of the rare bonds at the ( n  - 1)th and nth 
generations. The ratio of resistances of typical and rare bonds is given by 

(4) (Rb,n-d & , " - I )  = $(Rb,n/ R&) + $[2 + (&/ R , .  )I/ [3 + (Rhn/ R , .  )I. 
By renormalizing the Nth  generation ( N  - n) times, the resistance ratio scales as 

( 5 )  
4 N-" (Rb . . /R4")=(d  . 

101 l b l  

Figure 2. Renormalization process. ( 0 )  The generator for the typical cluster is renormalized 
to the typical bond. ( b )  The generator for the rare cluster is renormalized to the rare bond. 
The typical band and the rare bond are indicated by the solid line and the wavy line. 
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We can obtain the same scaling form ( 5 )  of the resistance ratio for the generators (d)  
or (e). This is due to having the same number of the cutting bonds in the generators 
( c ) ,  ( d )  and (e) (figure 1). 

We consider the current fractions in the ladder configuration with m plaquettes 
(figure 3). The current fractions i.., and ih," flowing through the bonds at the nth 
generation in figure 3 ( a )  are given by 

io," = R , ~ / ( R , 1 , + ( 2 R , . + R b , . ) - ' }  ( 6 0 )  

ib., = (2R .n  + R , n ) - ' / [ R , L + ( 2 R , n  f Rh,n)- i ] .  ( 6 6 )  

In the limit of N + m and n + 0, 

io," -f 1 ih.n'=(%.n/Rb.n)'O. (7) 

Similarly, the current fractions 
of N+m and n+O, 

ib.. and i , .  in figure 3(b)  are obtained. In the limit 

i.., + 1 ih." '= (&,"/ + 0 i<,. '= (&/ R , .  I 2  + 0. (8) 

Also we obtain the current fractions i..., ib,", i , .  and id,. in figure 3(c). In the limit of 
N + m  and n+O, 

ia." -f 1 

i , .  = (Ro,. /Rb.n)2+ 0 

ih., '= (Ra,n/Rh,n) +(I 
(9) 

id.. =(R,z,n/Rh.n)3+0. 

We can find that the minimum current fraction imjn," in the ladder configuration with 
m plaquettes at the nth generation scales as 

imin,n= (Ra,n/Rb,a)"'. (10) 

The minimum current fraction i,;, for the hierarchical model at the N t h  generation 
is given by a multiplicative process of minimum current fraction i,;"," in each stage 

1 .  ' = I  ,," m m . i l m i n . 2 . .  . Imin.n . . . I m i n . ~  

- (R , , /Rb , , )" (R . ,2 /R ,2 )" .  . . (R,n/Rh.n)". . . (Rn.N/Rb,N)". (11) 

By using ( 5 )  we obtain 

i,;,=exp[-m In$/{2(ln 5)2)(ln L ) 2 ]  (12) 

where we used the relationship L = S N .  We can find the minimum current fraction 
decreasing faster than power law. The minimum current fraction depends strongly on 
the number of plaquettes. The result with m = 1 agrees with that of Fourcade and 
Tremblay (1987). 

101 i b l  

Figure 3. The current fractions in the ladder configuration with m plaquettes. ( a )  m = I. 
( b )  m = 2 .  ( c )  m = 3 .  
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We consider the partition function 1 i9 .  For q 0, in a sufficiently large N limit, 

i q = ( 3  I q + 2 .  ($)"+6. (13)  

the partition function scales as 

Finally, we obtain the following expression of T( q )  = ( q  - l)D( q )  for q 3 0 

(q-l)D(q)=-ln[3+2(a)'+6(a)']/ln5 (14) 
where 1 iq  = L-''4'. 

The current fraction in the generator of the typical cluster contributes dominantly 
to the partition function for q 3 0. On the other hand, for q < 0, the minimum current 
fraction imj. dominates the partition function. Therefore, the partition function for 
q < 0 cannot scale. We can obtain the analytical form of the 'left-sided' multifractality 
(Mandelbrot et a /  1990) 

undefined q<o  
equation (14) q 3 0  

The family of scaling exponents for q 3 0 has the similar property to the earlier analysis 
(de Arcangelis er al 1985). Thus we can extend the de Arcangelis-Redner-Coniglio 
model to take into account the minimum current fraction decreasing faster than power 
law. 

We consider the hierarchical model in which the minimum current fraction decreases 
more slowly than the above model and decreases faster than the power law. The 
hierarchical model is constructed by making use of the generator shown in figure 4(a) 
instead of the generator ( c )  (or (d) or (e)) in figure 1. Similarly to the derivation of 
equation (3). one can derive the recursion relation of the resistances of the rare bonds 
between the ( n  - l)th and nth generations. The ratio of resistances of typical and rare 
bonds is given by 

( R D , ~ - - I / R . , ~ - - ~ )  = (Rh.n/Ro.n)+$[2+ (Ro /Ro .n)1 / [3  + (Rb,n/Ra,n)l. (16) 

By renormalizing the Nth  generation ( N  - n )  times, the resistance ratio is rewritten 

( Rb,JRa,") = 1 ++( 1 + 2 +  3 +. . . + N - n ) .  (17) 

We consider the current fractions within the generator shown in figure 4(a). In the 
limit of N + m  and n + O ,  the current fractions i.,. and i,. in figure 4(a) at the nth 
generation are given by 

1%" . + 1  and ib.n % ( R a , n / R b , n ) + o .  (18) 

I O 1  Ib i  

Figure 4. The generators for the rare cluster. The minimum current fraction in the hierar. 
c h i d  model with the generator ( a )  shows the different size dependence from the generators 
shown in figure I(e), ( d )  and ( e ) .  The minimum current fraction in the model constructed 
by the generator ( b )  shows the power law. 
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The minimum current fraction imi. for the hierarchical model at the Nth generation 
is given by the multiplicative process on each stage, similarly to equation (11). We 
obtain the dependence of the minimum current fraction upon N: 

imjn=gN/(N!)'. (19) 

imj.=exp[-(2/ln5)(ln L) In(ln L)]. (20) 

By using the Stirling formula and N =In L/ln 5 ,  we finally obtain 

We can find the minimum current fraction decreasing faster than power law. However, 
(20) is a less decreasing minimum current fraction than (12). This shows that the 
behaviour of the minimum current fraction is very sensitive to the geometry of the 
cluster (compare (12) with (20j). This manifests itself in a large degree of variability 
in the minimum current fraction on different clusters of the same size. 

Finally, we shall show a hierarchical fractal model in which the minimum current 
fraction can scale. The model is constructed by making use of the generator shown in 
figure 4(b) instead of the generator (c) (or ( d )  or (e)) in figure 1. Similarly to the 
derivation of (4), we obtain the ratio of resistances of typical and rare bonds 

(Rb,n-i/Ro,n--I) =%&,a/Ro,a) +d[2+(R,./R~..)1/[4+(Ra,n/R.,,)1. (21) 

In the limit of N + m  and n +0, the above recursion relation has a finite fixed point: 
(Rb/R.)*= (2~%-4) /3  =0.775. The current fractions in figure 4(b)  are given by 

i .  + [2+(Rb /R . )*I / [4+(Rb /R . )* l  i b +  1/[4f(Rb/ra)*l. (22) 

Thus, the minimum current fraction scales as 

(23) i , ~ ~ - 1 n [ 4 + ~ R ~ / R ~ ~ ' l / l n  3 
ml" 

The result (23) should be compared with (12) and (20). To have the anomalous 
multifractal measure for current fraction distribution, it is necessary that there does 
not exist a finite fixed point in the recursion relation of the resistance ratio. 

In summary, we present the hierarchical models which have the anomalous multi- 
fractal measure. We find that the minimum current fraction decreases faster than power 
law. We show that the minimum current fraction depends on the size L as follows 
imi.=exp[-cm(ln L)*] in the hierarchical models constructed by the generator of a 
ladder configuration with m plaquettes. Also we find the other hierarchical model with 
imin- exp[-c In L{ln(ln L)}]. We obtain the necessary condition that there is a faster 
decreasing minimum current fraction than power law. 

The author wishes to thank H Eugene Stanley and Jysoo Lee for especially helpful 
conversations. 
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